Bác An dự định làm bốn mái của ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp đều và các mái nhà kề nhau thì vuông góc với nhau. Hỏi ý tưởng trên có thực hiện được không?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử mái nhà của ngôi nhà được minh họa như hình vẽ trên.
Ta gắn hệ trục tọa độ như hình vẽ.
Gọi các cạnh đáy của hình chóp có độ dài là a, các cạnh bên có độ dài là b.
Vì ABCD là hình vuông cạnh a nên \(OA = OB = OC = OD = \frac{2} = \frac{{a\sqrt 2 }}{2}\).
Vì SO là đường cao của tam giác SOC nên \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} .\)
Khi đó, ta có: O(0; 0; 0), \(A\left( { - \frac{{a\sqrt 2 }}{2};0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),B\left( {0; - \frac{{a\sqrt 2 }}{2};0} \right),D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right)\) và \(S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\).
Ta có \(\overrightarrow {SC} = \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\), \(\overrightarrow {DC} = \left( {\frac{{a\sqrt 2 }}{2}; - \frac{{a\sqrt 2 }}{2};0} \right)\), \(\overrightarrow {BC} = \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\).
Có \(\left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }\\{ - 1}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }&{\frac{{a\sqrt 2 }}{2}}\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{{a\sqrt 2 }}{2}}&0\\1&{ - 1}\end{array}} \right|} \right)\)
\( = \left( { - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \frac{{a\sqrt 2 }}{2}} \right)\).
\(\left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} }&{\frac{{a\sqrt 2 }}{2}}\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{{a\sqrt 2 }}{2}}&0\\1&1\end{array}} \right|} \right)\)
\( = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\).
Ta có mặt phẳng (SCD) nhận \(\overrightarrow = \left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right]\) làm một vectơ pháp tuyến.
Mặt phẳng (SCB) nhận \(\overrightarrow = \left[ {\overrightarrow {SC} ,\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right]\) làm một vectơ pháp tuyến.
Vì \(\overrightarrow .\overrightarrow = - \left( {\frac{{2{b^2} - {a^2}}}{2}} \right) + \left( {\frac{{2{b^2} - {a^2}}}{2}} \right) - \frac{{{a^2}}}{2} = - \frac{{{a^2}}}{2} \ne 0\).
Do đó hai mặt phẳng (SCD) và (SCB) không vuông góc với nhau.
Do đó ý tưởng trên không thực hiện được.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |