Bài tập  /  Bài đang cần trả lời

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”, B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8” và C là biến cố “Xuất hiện ít nhất một mặt có 6 chấm”. a) Tính \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\) và P(A|B). b) Tính \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}}\) và P(C|A).

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”, B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8” và C là biến cố “Xuất hiện ít nhất một mặt có 6 chấm”.

a) Tính \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\) và P(A|B).

b) Tính \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}}\) và P(C|A).

1 Xem trả lời
Hỏi chi tiết
16
0
0
Nguyễn Thị Thảo Vân
11/09/2024 11:12:55

Ta có không gian mẫu của phép thử là

W = {(i; j): 1 ≤ i ≤ 6, 1 ≤ j ≤ 6} trong đó (i; j) là số chấm xuất hiện lần lượt ở hai con xúc xắc. Suy ra n(W) = 36.

a) A ∩ B là biến cố “Xuất hiện hai mặt có cùng số chấm và tổng bằng 8”.

Tập hợp các kết quả thuận lợi cho biến cố A ∩ B là {(4; 4)}. Suy ra n(A ∩ B) = 1.

Do đó \(P\left( {A \cap B} \right) = \frac{1}\).

B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8”.

Tập hợp các kết quả thuận lợi cho biến cố B là {(2; 6), (3; 5), (4; 4), (5; 3), (6; 2)}.

Suy ra n(B) = 5.

Do đó \(P\left( B \right) = \frac{5}\).

Vậy \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{1}{5}\).

Trong số 5 kết quả thuận lợi cho biến cố B thì có 1 kết quả thuận lợi cho biến A.

Do đó P(A|B) = \(\frac{1}{5}\).

b) C ∩ A là biến cố “Xuất hiện hai mặt có cùng số chấm trong đó có ít nhất một mặt 6 chấm”.

Tập hợp các kết quả thuận lợi cho biến cố C ∩ A là {(6; 6)}. Suy ra n(C ∩ A) = 1.

Do đó \(P\left( {C \cap A} \right) = \frac{1}\).

A là biến cố “Xuất hiện hai mặt có cùng số chấm”.

Tập hợp các kết quả thuận lợi cho biến cố A là {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}.

Suy ra n(A) = 6. Do đó \(P\left( A \right) = \frac{6} = \frac{1}{6}\).

Vậy \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{1}{6}\).

Trong số 6 kết quả thuận lợi cho biến cố A thì có 1 kết quả thuận lợi cho biến cố C.

Do đó \(P\left( {C|A} \right) = \frac{1}{6}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×