Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Tứ giác ADHE, có:
\[\widehat {DAE} = 90^\circ \] (do tam giác ABC vuông tại A);
\[\widehat {ADH} = 90^\circ \] (do HD ⊥ AB tại D);
\[\widehat {AEH} = 90^\circ \] (do HE ⊥ AC tại E).
Do đó tứ giác ADHE là hình chữ nhật.
Vậy AH = DE.
b) Tam giác HEC vuông tại E có EQ là đường trung tuyến.
Suy ra EQ = HQ = QC.
Khi đó tam giác HEQ cân tại Q.
Vì vậy \(\widehat {QEH} = \widehat {QHE}\) (1)
Hình chữ nhật ADHE có O là giao điểm của hai đường chéo AH và DE.
Suy ra O là trung điểm của AH và O cũng là trung điểm của DE.
Mà AH = DE (chứng minh trên).
Do đó OH = OE = OD = OA.
Vì vậy tam giác OHE cân tại O.
Suy ra \(\widehat {OEH} = \widehat {OHE}\) (2)
Ta có AH ⊥ HQ (giả thiết).
Suy ra \(\widehat {OHQ} = 90^\circ \).
Vì vậy \(\widehat {OHE} + \widehat {QHE} = 90^\circ \) (3)
Từ (1), (2), (3), suy ra \(\widehat {OEQ} = 90^\circ \).
Khi đó OE ⊥ EQ (*)
Chứng minh tương tự, ta được OD ⊥ DP (**)
Từ (*), (**), suy ra PD // EQ.
Mà \(\widehat {OEQ} = 90^\circ \) (chứng minh trên).
Vậy tứ giác DEQP là hình thang vuông.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |