Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA ta lấy theo thứ tự các điểm E,F,G,H sao cho AE = BF = CG = DH . Xác định vị trí của các điểm E, F,G,H sao cho tứ giác EFGH có chu vi nhỏ nhất .
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tam giác HAE = tam giác EBF = tam giác FCG = tam giác GHD
⇒ HE = EF = FG = GH
⇒ EFGH là hình thoi .
⇒ AHE^=BEF^
⇒AHE^+AEH^=900
⇒ BEF^+AEH^=900⇒HEF^=900
⇒ EFGH là hình vuông
Gọi O là giao điểm của AC và EG . Tứ giác AECG có AE = CG, AE //CG nên là hình bình hành suy ra O là trung điểm của AC và EG , do đó O là tâm của cả hai hình vuông ABCD và EFGH.
DHOE vuông cân : HE2 = 2OE2 ⇒ HE = OE2
Chu vi EFGH = 4HE = 42 OE . Do đó chu vi EFGH nhỏ nhất ⇔ OE nhỏ nhất
Kẻ OK vuông góc với AB ⇒ OE ≥OK ( OK không đổi )
OE = OK ⇔ E ≡ K
Do đó min OE = OK
Như vậy, chu vi tứ giác EFGH nhỏ nhất khi và chỉ khi E,F,G,H là trung điểm của AB , BC, CD, DA.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |