Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Đặt t = x + y (t ≥ 2).
Theo đề, ta có 3(x + y) = 4xy. Suy ra \(xy = \frac{4}\).
Theo bất đẳng thức Cauchy, ta có (x + y)2 ≥ 4xy.
⇔ (x + y)2 ≥ 3(x + y) (theo giả thiết).
⇔ (x + y)2 – 3(x + y) ≥ 0.
⇔ (x + y)(x + y – 3) ≥ 0.
⇔ x + y – 3 ≥ 0.
⇔ x + y ≥ 3.
⇔ t ≥ 3.
Mặt khác, vì x, y ≥ 1 nên ta có (x – 1)(y – 1) ≥ 0.
⇔ xy – (x + y) + 1 ≥ 0.
\( \Leftrightarrow \frac{4} - t + 1 \ge 0\)
⇔ t ≤ 4.
Vì vậy ta có 3 ≤ t ≤ 4.
Theo đề, ta có 3(x + y) = 4xy.
\( \Leftrightarrow \frac = \frac{4}{3}\)
\( \Leftrightarrow \frac{1}{y} + \frac{1}{x} = \frac{4}{3}\).
Ta có \(P = {x^3} + {y^3} - 3\left( {\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}}} \right) = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) - 3\left[ {{{\left( {\frac{1}{x} + \frac{1}{y}} \right)}^2} - \frac{2}} \right]\)
\( = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) - 3{\left( {\frac{1}{x} + \frac{1}{y}} \right)^2} + \frac{6}\)
\( = {t^3} - 3.\frac{4}.t - 3{\left( {\frac{4}{3}} \right)^2} + \frac = {t^3} - \frac{9}{4}{t^2} - \frac{3} + \frac{8}{t}\)
Ta có \(P'\left( t \right) = 3{t^2} - \frac{9}{2}t - \frac{8}{{{t^2}}} = \frac{1}{{2{t^2}}}\left( {6{t^4} - 9{t^3} - 16} \right)\)
\( = \frac{1}{{2{t^2}}}\left[ {{t^3}\left( {5t - 9} \right) + \left( {{t^4} - 16} \right)} \right] > 0,\,\forall t \in \left[ {3;4} \right]\).
Suy ra hàm số P(t) đồng biến trên [3; 4].
Vậy:
⦁ Giá trị nhỏ nhất của P là \(P\left( 3 \right) = \frac\) khi t = 3 \( \Leftrightarrow x = y = \frac{3}{2}\).
⦁ Giá trị lớn nhất của P là \(P\left( 4 \right) = \frac{3}\) khi t = 4 \( \Leftrightarrow \left[ \begin{array}{l}x = 1 \wedge y = 3\\x = 3 \wedge y = 1\end{array} \right.\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |