Cho hình vuông ABCD có cạnh bằng 4cm. Trên các cạnh AB, BC,CD,DA, lấy theo thứ tự các điểm E,F,G,H sao cho AE = BF = CG = DH . Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tam giác AHE = tam giác BEF = tam giác CFG = tam giác DGH
⇒ HE = EF = FG = GH , HEF = 900
⇒ HEFG là hình vuông nên chu vi EFGH nhỏ nhất khi HE nhỏ nhất .
Đặt AE = x thì HA = EB = 4-x
Tam giác HAE vuông tại A nên :
HE 2 = AE2 +AE2 = x2 + (4 - x)2 = 2x2 - 8x +16 = 2(x - 2)2 +8 ≥ 8
HE = 8 =22 ⇔ x = 2
Chu vi tứ giác EFGH nhỏ nhất bằng 82 cm , khi đó AE = 2 cm .
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |