Cho tam giác vuông ABC có độ dài các cạnh góc vuông AB = 6 cm, AC = 8cm. M là điểm di chuyển trên cạnh huyền BC. Gọi D và E là chân các đường vuông góc kẻ từ M đến AB và AC . Tính diện tích lớn nhất của tứ giác ADME.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt AD = x thì ME = x
ME //AB ⇒ EMAB=CECA⇒x6=CE8⇒CE=43x⇒ AE = 8 -43x
Ta có : SADME = AD .AE = x ( 8 -43 x ) = 8x -43 x2 = -43(x - 3)2 +12 ≤ 12
SADME = 12 cm2 ⇔ x =3
Diện tích lớn nhất của tứ giác ADME bằng 12 cm2 ,khi đó D là trung điểm của AB , M là trung điểm của BC và E là trung điểm của AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |