Cho hình lăng trụ \(ABC.A'B'C'\)có tam giác \(ABC\) vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 2 \), \(AA' = 2a\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {A'B'C'} \right)\) trùng với trung điểm \(H\) của đoạn \(B'C'\) (tham khảo hình vẽ dưới đây). Khoảng cách giữa hai đường thẳng \(AA'\) và \(BC'\) bằng:
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: \(\frac{{a\sqrt {15} }}{5}\)
Phương pháp giải:
- Chứng minh \(d\left( {AA';BC'} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\), sử dụng định lí khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này đến mặt phẳng song song và chứa đường thẳng kia.
- Trong \(\left( {ABC} \right)\) kẻ \(AK \bot BC{\mkern 1mu} {\mkern 1mu} \left( {K \in BC} \right)\), trong \(\left( {AHK} \right)\) kẻ \(AI \bot HK{\mkern 1mu} {\mkern 1mu} \left( {I \in HK} \right)\), chứng minh \(AI \bot \left( {BCC'B'} \right)\).
- Sử dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Giải chi tiết:
Ta có \(AA'//BB' \Rightarrow AA'//\left( {BCC'B'} \right) \supset BC'\).
\( \Rightarrow d\left( {AA';BC'} \right) = d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\)
Trong \(\left( {ABC} \right)\) kẻ \(AK \bot BC{\mkern 1mu} {\mkern 1mu} \left( {K \in BC} \right)\), trong \(\left( {AHK} \right)\) kẻ \[AI \bot HK{\mkern 1mu} {\mkern 1mu} \left( {I \in HK} \right)\] ta có:
\[\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{BC \bot AK}\\{BC \bot AH}\end{array}} \right. \Rightarrow BC \bot \left( {AHK} \right) \Rightarrow BC \botAI}\\{\left\{ {\begin{array}{*{20}{l}}{AI \bot HK}\\{AI \bot BC}\end{array}} \right. \Rightarrow AI \bot \left( {BCC'B'} \right)}\end{array} \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AI = d\left( {AA';BC'} \right)\]Áp dụng hệ thức lượng trong tam giác vuông \[ABC\] ta có: \[AK = \frac{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{a.a\sqrt 3 }}{{\sqrt {{a^2} + 3{a^2}} }} = \frac{{a\sqrt 3 }}{2}\]
Tam giác \[A'B'C'\] có \[B'C' = {\rm{ }}\sqrt {A'{{B'}^2} + A'{{C'}^2}} = 2a \Rightarrow A'H = \frac{1}{2}B'C' = a\]
\[ \Rightarrow AH = {\rm{ }}\sqrt {A{{A'}^2} + A'{H^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 {\rm{ }}\]
Áp dụng hệ thức lượng trong tam giác vuông \(AHK\) ta có:
\(AI = \frac{{\sqrt {A{H^2} + A{K^2}} }} = \frac{{a\sqrt 3 .\frac{{a\sqrt 3 }}{2}}}{{\sqrt {3{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {15} }}{5}\)
Vậy \(d\left( {AA';BC'} \right) = \frac{{a\sqrt {15} }}{5}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |