Cho tam giác ABC nhọn, vẽ đường tròn \(\left( {O;\frac{1}{2}BC} \right)\) cắt các cạnh AB, AC theo thứ tự tại D và E.
a) Chứng minh rằng: CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại D.
Suy ra: CD ⊥ AB.
Tam giác BCE nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại E.
Suy ra: BE ⊥ AC.
b) Xét ∆ABC có K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC.
Suy ra: AK ⊥ BC.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |