Bài tập  /  Bài đang cần trả lời

Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) và 2 đường cao BD, CE cắt nhau tại H (D Î AC, E Î AB). a) Chứng minh tứ giác BEDC nội tiếp. b) Vẽ đường kính AM của đường tròn (O), AH cắt BC tại F (F Î BC). Chứng minh: AB.AC = AF.AM c) Tia DE và CB cắt nhau tại K. AK cắt đường tròn (O) tại N. Chứng minh: N, H, M thẳng hàng.

Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) và 2 đường cao BD, CE cắt nhau tại H (D Î AC, E Î AB).

a) Chứng minh tứ giác BEDC nội tiếp.

b) Vẽ đường kính AM của đường tròn (O), AH cắt BC tại F (F Î BC).

Chứng minh: AB.AC = AF.AM

c) Tia DE và CB cắt nhau tại K. AK cắt đường tròn (O) tại N. Chứng minh: N, H, M thẳng hàng.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Phạm Minh Trí
11/09/2024 11:56:39

a) Ta có: BEC^= 90° (CE ^ AB), BDC^= 90° (BD ^ AC)

Þ BEC^=BDC^ = 90°

Mà BEC^ và BDC^ là hai góc có đỉnh kề nhau cùng nhìn cạnh BC của tứ giác BEDC.

Þ Tứ giác BEDC nội tiếp.

b) Ta có điểm C nằm trên đường tròn (O) đường kính AM

Nên ACM^= 90° (góc nội tiếp chắn nửa đường tròn)

Mà AH cắt BC tại F nên AF ⊥ BC do đó AFB^=90°

Suy ra ACM^=AFB^ = 90°

Xét ∆ACM và ∆ABF, có:

ACM^=AFB^ = 90° (chứng minh trên),

ABC^=AMC^(hai góc nội tiếp cùng chắn cung AC của (O))

Þ ∆ACM ᔕ ∆AFB (g.g)

Þ ACAF=AMAB (tỉ số đồng dạng)

Þ AB.AC = AF.AM (đpcm).

c) • Tứ giác BEDC là tứ giác nội tiếp (chứng minh câu a)

Þ EDC^=ECB^ (hai góc nội tiếp cùng chắn cung EB)

Hay KDB^=KCE^

Xét DKDB và DKCE có:

KDB^=KCE^ (Chứng minh trên),

DKC^ là góc chung

Þ DKDB ᔕ DKCE (g.g)

⇒KDKC=KBKE (tỉ số đồng dạng)

Þ KB.KC = KD.KE        (1)

• Tứ giác ANBC nội tiếp

⇒KBN^=KAC^

Xét DKBN và DKAC có:

AKC^ là góc chung,

 KBN^=KAC^ (chứng minh trên)

Þ DKBN ᔕ DKAC (g.g)

⇒KBKA=KNKC (tỉ số đồng dạng)

Þ KB. KC = KA.KN      (2)

Từ (1) và (2) ta có:

KD.KE = KA.KN (= KB. KC)

⇒KEKA=KNKD

Xét DKNE và DKAD có:

AKD^ là góc chung,

 KEKA=KNKD (chứng minh trên)

Þ DKNE ᔕ DKAD (c.g.c)

 ⇒KEN^=KAD^ (hai góc tương ứng)

Þ Tứ giác ANED nội tiếp đường tròn.

Do đó 4 điểm A, N, E, D cùng thuộc một đường tròn          (3)

• Tứ giác AEHD có  AEH^=ADH^=90°

Þ E và D cùng thuộc đường tròn đường kính AH

Þ 4 điểm A, E, H, D cùng thuộc đường tròn đường kính AH          (4)

Từ (3) và (4) suy ra 5 điểm A, N, E, H, D cùng thuộc đường tròn đường kính AH

Do đó tứ giác ANHD nội tiếp đường tròn

 ⇒ANH^=90° (góc nội tiếp chắn nửa đường tròn)

Þ AN ⊥ HN tại N           (5)

• Ta có điểm N nằm trên đường tròn đường kính AM

 ⇒ANM^ = 90° (góc nội tiếp chắn nửa đường tròn)          

Þ AN ⊥ MN tại N          (6)

Từ (5) và (6) ta có: MN ≡ HN

Do đó ba điểm N, H, M thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×