Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N. a) Chứng minh: AM = CN.
b) Chứng minh: tứ giác DMBN là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì ABCD là hình bình hành nên AB // CD
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{D}}C}\) (Hai góc so le trong) và AB = CD, AD = BC (1)
Vì DM là tia phân giác của góc ADC ⇒ \(\widehat {ADM} = \widehat {MDC} = \frac{1}{2}\widehat {CDA}\)
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{DA}}}\)
Do đó tam giác ADM cân tại A
Suy ra AM = AD (tính chất) (2)
Vì BN là tia phân giác của góc ABC ⇒ \(\widehat {ABN} = \widehat {NBC} = \frac{1}{2}\widehat {ABC}\)
Vì ABCD là hình bình hành nên AB // CD nên \(\widehat {ABN} = \widehat {BNC}\) (Hai góc so le trong)
Suy ra \(\widehat {CBN} = \widehat {BNC}\)
Do đó tam giác BCN cân tại C
Suy ra CN = CB (tính chất) (3)
Từ (1), (2) và (3) suy ra AM = CN
Vậy AM = CN
b) Ta có:
AB = AM + MB
CD = CN + ND
Mà AB = CD, AM = CN (chứng minh câu a)
Suy ra MB = ND
Tứ giác DMBN có:
MB = ND (chứng minh trên)
MB // ND (vì AB // CD)
Suy ra DMBN là hình bình hành
Vậy DMBN là hình bình hành.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |