Bài tập  /  Bài đang cần trả lời

Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), \[AB = AD = \frac{1}{2}CD\]. Gọi E là trung điểm của CD. M là giao điểm của AC và BE, K là giao điểm của AE và DM. Kẻ DH vuông góc với AC, cắt AE ở I. a) Tứ giác ABCE là hình gì? b) Tứ giác ABED là hình gì? c) Tứ giác BIDK là hình gì?

Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), \[AB = AD = \frac{1}{2}CD\]. Gọi E là trung điểm của CD. M là giao điểm của AC và BE, K là giao điểm của AE và DM. Kẻ DH vuông góc với AC, cắt AE ở I.

a) Tứ giác ABCE là hình gì?

b) Tứ giác ABED là hình gì?

c) Tứ giác BIDK là hình gì?

1 Xem trả lời
Hỏi chi tiết
13
0
0
Phạm Văn Phú
11/09/2024 12:17:05

Lời giải

a) Vì E là trung điểm của CD (giả thiết)

Nên \[CE = ED = \frac{1}{2}\;CD\]

Mà \[AB = AD = \frac{1}{2}CD\] (giả thiết)

Suy ra AB = AD = CE = ED

Vì ABCD là hình thang vuông (giả thiết)

Nên AB // CD

Xét tứ giác ABCE có AB // CE, AB = CE (chứng minh trên)

Suy ra ABCE là hình bình hành

b) Xét tứ giác ABED có AB // DE, AB = DE (chứng minh câu a)

Suy ra ABED là hình bình hành

Mà \(\widehat A = \widehat D = 90^\circ \), AB = AD (giả thiết)

Do đó ABED là hình vuông

c) Gọi O là giao điểm của AE và BD

Vì ABED là hình vuông

Suy ra OE = OA = OD = OB, BD ⊥ AE , \(\widehat {ABM} = \widehat {DEM} = 90^\circ \)

Xét hình bình hành ABCE có AC cắt BE tại M

Suy ra M là trung điểm của AC và BE

Hay BM = ME

Xét tam giác ABM và tam giác DEM có

\(\widehat {ABM} = \widehat {DEM} = 90^\circ \) (chứng minh trên)

AB = DE (chứng minh câu a)

BM = ME (chứng minh trên)

Do đó DABM = DDEM (c.g.c)

Suy ra \(\widehat {BAM} = \widehat {EDM}\) (hai góc tương ứng)

Xét DAHD vuông tại H có \(\widehat {HA{\rm{D}}} + \widehat {H{\rm{D}}A} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {HA{\rm{D}}} + \widehat {HAB} = \widehat {DAB} = 90^\circ \)

Suy ra \(\widehat {HAB} = \widehat {H{\rm{D}}A}\)

Lại có \(\widehat {BAH} = \widehat {EDM}\) (chứng minh trên)

Suy ra \(\widehat {HDA} = \widehat {EDM}\)

Xét tam giác ADE có \(\widehat {ADE} = 90^\circ \), AD = DE

Nên tam giác ADE vuông cân tại D

Suy ra \(\widehat {DAE} = \widehat {DE{\rm{A}}} = \frac{{90^\circ }}{2} = 45^\circ \)

Xét tam giác AID và tam giác EKD có

\(\widehat {DAE} = \widehat {DE{\rm{A}}}\) (chứng minh trên)

AD = DE (chứng minh câu a)

\(\widehat {IDA} = \widehat {EDK}\) (chứng minh trên)

Do đó △AID = △EKD (g.c.g)

Suy ra DI = KD, AI = EK (các cặp cạnh tương ứng)

Ta có OA = OI + IA, OE = OK + KE

Mà OA = OE, AI = EK (chứng minh trên)

Suy ra OI = OK

Xét tứ giác BIDK có BD cắt IK tại O

Mà OI = OK, OB = OD (chứng minh trên)

Suy ra BIDK là hình bình hành

Lại có DI = DK (chứng minh trên)

Do đó BIDK là hình thoi.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×