Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).c) Tính chu vi tam giác AMK theo R.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét (O; R) có AB là 2 tiếp tuyến tại điểm B
Suy ra AB ⊥ OB hay tam giác OAB vuông tại B
Ta có AB ⊥ OB, OK ⊥ OB
Nên AB // OK
Suy ra \(\widehat = \widehat \) (hai góc so le trong)
Xét (O;R) có AB , AC là 2 tiếp tuyến cắt nhau tại A
Suy ra AO là tia phân giác của góc BAC, AC = AB
Do đó \(\widehat = \widehat \)
Mà \(\widehat = \widehat \) (chứng minh trên)
Nên \(\widehat = \widehat \)
Suy ra tam giác OAK cân tại K
b) Vì I thuộc (O; R) nên OI = R
Mà OA = 2R (giả thiết)
Suy ra IA = OI = R
Do đó I là trung điểm của OA
Xét tam giác OAK cân tại K có KI là đường trung tuyến
Suy ra KI là đường cao
Nên KI ⊥ OA
Hay KM ⊥ OA
Suy ra KM là tiếp tuyến của đường tròn (O)
c) Vì tam giác OAB vuông tại O nên OA2 = OB2 + AB2 (định lý Pytago)
Hay AB2 = OA2 – OB2 = (2R)2 – R2 = 3R2
Suy ra \(AB = R\sqrt 3 \)
Xét (O;R) có KC, KI là 2 tiếp tuyến cắt nhau tại K
Nên KI = KC
Xét (O;R) có MB, MI là 2 tiếp tuyến cắt nhau tại M
Nên MI = MB
Chu vi tam giác MKA là:
MK + MA + AK
= MI + IK + MA + AK
= MB + CK + MA + AK
= (MB + MA) + (MB + MA)
= AB + AC
\[ = 2AB = 2R\sqrt 3 \].
Vậy chu vi tam giác AKM bằng \[2R\sqrt 3 \].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |