Bài tập  /  Bài đang cần trả lời

Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E. a) Chứng minh HA = HC và \(\widehat {DCO} = 90^\circ \) b) Chứng minh DH . DO = DE . DB c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng vuông góc AD ở K. KF cắt BC ở M. Chứng minh MK = MF.

Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E.

a) Chứng minh HA = HC và \(\widehat {DCO} = 90^\circ \)

b) Chứng minh DH . DO = DE . DB

c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng vuông góc AD ở K. KF cắt BC ở M. Chứng minh MK = MF.

1 Xem trả lời
Hỏi chi tiết
34
0
0
Tôi yêu Việt Nam
11/09/2024 12:16:32

Lời giải

a) Vì A, C cùng thuộc (O), OH ⊥ AC

Nên H là trung điểm của AC (liên hệ giữa đường kính và dây cung)

Suy ra AH = HC

Vì OA = OC nên tam giác AOC cân tại O

Mà OH là đường cao

Suy ra OH là phân giác của góc AOC

Do đó \(\widehat {AOH} = \widehat {HOC}\)

Xét tam giác DAO và tam giác DCO có

DO là cạnh chung

\(\widehat {AOD} = \widehat {DOC}\) (chứng minh trên)

OA = OC

Do đó △DAO = △DCO (c.g.c)

Suy ra \(\widehat {DAO} = \widehat {DCO}\) (hai góc tương ứng)

Mà \(\widehat {DAO} = 90^\circ \) (vì DA là tiếp tuyến của (O))

Nên \(\widehat {DCO} = 90^\circ \)

b) Xét tam giác ADO vuông tại A có AH ⊥ DO

Nên DH . DO = AD2                                        (1)

Vì E thuộc đường tròn (O) đường kính AB

Nên tam giác ABE vuông tại E

Suy ra AE ⊥ BE

Xét tam giác ADB vuông tại A có AE ⊥ DB

Nên DE . DB = AD2                                        (2)

Từ (1) và (2) suy ra DH . DO = DE . DB

c) Gọi P là giao điểm của AM và DO, Q là giao điểm của AD và EP

Xét tam giác ABM có OP // BM, OA = OB

Suy ra P là trung điểm của AM

Xét tam giác AMF có

P là trung điểm của AM, E là trung điểm của AF

Suy ra PE là đường trung bình

Do đó PE // MF

Mà MF ⊥ AD, AB ⊥ AD

Suy ra PE // KF // AB

Xét tam giác AKF có EA = EF, QE // FK

Suy ra Q là trung điểm của AK

Xét tam giác ADB có \(\frac = \frac = \frac\)

Mà AO = BO nên PQ = PE

Xét tam giác AKF có \(\frac = \frac\left( { = \frac} \right)\)

Suy ra KM = MF

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×