Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn có:
a = 2, b = m + 1, c = m – 8 (m là tham số)
∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65
Để phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0 ⇔ m2 – 6m + 65 ≥ 0
Xét tam thức bậc hai m2 – 6m + 65 có:
∆m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0
Sử dụng định lí về dấu của tam thức bậc hai, tam thức m2 – 6m + 65 mang dấu dương với mọi m ∈ ℝ
Do đó m2 – 6m + 65 > 0 với mọi số thực m
Vậy phương trình đã cho luôn có nghiệm với mọi giá trị thực của m.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |