Cho hàm số y = (2 – m)x + m + 1 (với m là tham số và m ≠ 2) có đồ thị là đường thẳng d.
a) Khi m = 0, hãy vẽ d trên trục tọa độ Oxy.
b) Tìm m để d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bằng 2.
c) Tìm m để d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Khi m = 0 thì d có dạng y = 2x + 1
Bảng giá trị:
x | –1 | 0 | 1 |
y | –1 | 1 | 3 |
Ta có đường thẳng d đi qua hai điểm A(0; 1) và \({\rm{B}}\left( {\frac{{ - 1}}{2};0} \right)\)
b) Thay x = 2 vào y = 2x – 5 ta có
y = 2 . 2 – 5 = – 1
Thay x = 2, y = – 1 vào d ta có
– 1 = (2 – m). 2 + m + 1
⇔ – 1 = 4 – 2m + m + 1
⇔ m = 6 (thỏa mãn)
Khi m = 6 thì d có dạng y = – 4x + 7 cắt đường thẳng y = 2x – 5
Vậy m = 6 thì d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bẳng 2.
c) Vì m ≠ 2 nên d cắt Ox tại điểm \({\rm{C}}\left( {\frac;0} \right)\) và cắt Oy tại điểm D(0; m + 1)
Ta có SCOD = \(\frac{1}{2}\left| {\frac} \right|\left| {m + 1} \right|\)= 2
⇔ (m + 1)2 = 4\(\left| {{\rm{m}} - 2} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}{\left( {m + 1} \right)^2} = 4(m - 2)\\{\left( {m + 1} \right)^2} = 4(2 - m)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m - 8\\{m^2} + 2m + 1 = 8 - 4m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\{m^2} + 6m - 7 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\(m - 1)(m + 7) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 7\end{array} \right.\)(thỏa mãn)
Vậy m = 1 hoặc m = – 7 thì d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |