Bài tập  /  Bài đang cần trả lời

Cho (O) đường kính AB, M ∈ (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) tại C và D và (I) đường kính CD. Chứng minh AB là tiếp tuyến của (I).

Cho (O) đường kính AB, M ∈ (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) tại C và D và (I) đường kính CD. Chứng minh AB là tiếp tuyến của (I).
1 trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Phú
11/09 12:14:32

Lời giải

Vì CA ⊥ AB, BD ⊥ AB nên CA // BD

Suy ra ACDB là hình thang

Lại có \(\widehat {CAB} = 90^\circ \) nên ACDB là hình thang vuông

Đường tròn tâm I đường kín CD nên I là trung điểm của CD

Xét hình thang vuông ACDB có I là trung điểm của CD, O là trung điểm của AB

Suy ra IO là đường trung bình của hình thang

Do đó IO // CA

Mà CA ⊥ AB suy ra IO ⊥ AB                                  (1)

Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C

Suy ra OC là tia phân giác của \(\widehat {AOM}\)

Do đó \(\widehat {AOC} = \widehat {COM} = \frac{1}{2}\widehat {AOM}\)

Suy ra OD là tia phân giác của \(\widehat {BOM}\)

Do đó \(\widehat {BOD} = \widehat {DOM} = \frac{1}{2}\widehat {BOM}\)

Ta có \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)

Suy ra tam giác COD vuông tại O

Mà OI là đường trung tuyến

Do đó OI = \(\frac{1}{2}\) CD

Suy ra O thuộc (I) đường kính CD                 (2)

Từ (1) và (2) suy ra AB là tiếp tuyến của đường tròn (I)

Vậy AB là tiếp tuyến của đường tròn (I).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k