Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Trong mặt phẳng (SAC), kẻ HI // SA thì HI ^ (ABC).
Ta có: \(CA = AB.\cos 30^\circ = a\sqrt 3 \).
Do đó: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin 30^\circ = \frac{1}{2}.2a.a\sqrt 3 .\sin 30^\circ = \frac{{{a^2}\sqrt 3 }}{2}\).
Ta có: \(\frac = \frac = \frac{{S{C^2}}} = \frac{{A{C^2}}}{{S{C^2}}}\)
\( = \frac{{A{C^2}}}{{S{A^2} + A{C^2}}} = \frac{{3{a^2}}}{{4{a^2} + 3{a^2}}} = \frac{3}{7}\).
\( \Rightarrow HI = \frac{6}{7}a\)
Vậy \({V_{H.ABC}} = \frac{1}{3}{S_{ABC}}.HI = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{2}.\frac{6}{7}a = \frac{{{a^3}\sqrt 3 }}{7}\)
Gọi K là hình chiếu vuông góc của A lên SB. Ta có:
AH ^ SC, AH ^ CB (Do CB ^ (SAC)).
Þ AH ^ (SBC) Þ AH ^ SB
Lại có: SB ^ AK Þ SB ^ (AHK).
Do đó, góc giữa hai mặt phẳng (SAB), (SBC) là \(\widehat {HKA}\).
\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{4{a^2}}} + \frac{1}{{3{a^2}}} = \frac{7}{{12{a^2}}} \Rightarrow AH = \frac{{2a\sqrt 3 }}{{\sqrt 7 }}\);
\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{4{a^2}}} + \frac{1}{{4{a^2}}} = \frac{1}{{2{a^2}}} \Rightarrow AK = a\sqrt 2 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |