Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét ∆BAK có:
I là trung điểm của AB;
H là trung điểm của BK.
Þ IH là đường trung bình của ∆BAK
Þ IH // AK.
Xét tứ giác ADHK có: DH // AK và AD // HK nên suy ra ADHK là hình bình hành.
b) Do AKHD là hình bình hành suy ra HK // AD và HK = AD.
Mà HK = BH (gt) và H, K Î BC
Þ BH // AD và BH = AD.
Xét tứ giác AHBD có: BH // AD và BH = AD
Þ AHBD là hình bình hành.
Mà AH ^ CB hay \(\widehat {AHB} = 90^\circ \)
Þ AHBD là hình chữ nhật.
Xét ∆ABH vuông ở H có:
AH2 + BH2 = AB2
Û 62 + BH2 = 102
Û BH2 = 64
Þ BH = 8 (cm)
Xét hình chữ nhật AHBD có diện tích là:
8 . 6 = 48 (cm2).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |