Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
a) Chứng minh: AMON là hình thoi.
b) Chứng minh: MN là tiếp tuyến của đường tròn.
c) Tính diện tích AMON.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Do AB là tiếp tuyến của (O) Þ OB ^ AB
Mà OB ^ ON (gt) Þ AB // ON hay AM // ON (1)
Do AC là tiếp tuyến của (O) Þ OC ^ AC
Mà OC ^ OM (gt) Þ AC // OM hay AN // OM (2)
Từ (1) và (2) nên suy ra AMON là hình thoi
b) Đặt I là trung điểm của OA \( \Rightarrow OI = \frac{2} = \frac{2} = R\)
Hay OI là bán kính của (O).
Do AMON là hình thoi nên suy ra OA ^ MN tại I.
Hay OI ^ MN tại I.
Mà OI là bán kính của (O) Þ MN là tiếp tuyến của (O).
c) Xét tam giác OAB có OA ^ AB.
\( \Rightarrow \sin \widehat {OAB} = \frac = \frac{1}{2} \Rightarrow \widehat {OAB} = 30^\circ \)
\( \Rightarrow \widehat {ION} = 30^\circ \) (Hai góc ở vị trí so le trong).
Xét hình thoi AMON có OA cắt MN tại I Þ I là trung điểm MN.
Hay IN = IM = \(\frac{2}\).
Xét tam giác ION có \(\widehat {OIN} = 90^\circ ;\;\widehat {ION} = 30^\circ \)
\( \Rightarrow OI = IN.\cos \widehat {ION} = \frac{2}.\cos 30^\circ \)
\( \Rightarrow MN = \frac{{\sqrt 3 }} = \frac{{\sqrt 3 }}\).
\({S_{AMON}} = \frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{\sqrt 3 }} = \frac{{4{R^2}}}{{\sqrt 3 }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |