LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM. a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn. b) Chứng minh: ∆AKN = ∆BKM. c) Chứng minh: AM . BE = AN . AQ. d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung ...

Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM.

a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn.

b) Chứng minh: ∆AKN = ∆BKM.

c) Chứng minh: AM . BE = AN . AQ.

d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định

1 trả lời
Hỏi chi tiết
11
0
0

Lời giải

a) Xét đường tròn tâm O, đường kính AB có:

\(\widehat {APB} = \widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Nên \(\widehat {QPB} = 90^\circ ;\;\widehat {QMA} = 90^\circ \) (hai góc kề bù với hai góc trên).

Suy ra \(\widehat {QPE} + \widehat {QME} = 90^\circ + 90^\circ = 180^\circ \).

Do đó, tứ giác PQME nội tiếp đường tròn.

b) K là điểm chính giữa cung AB nên

Þ AK = KB (liên hệ giữa cung và dây)

Xét ∆AKN và ∆BKM có:

AK = BK (cmt)

\(\widehat {NAK} = \widehat {MBK}\) (Hai góc nội tiếp cùng chắn cung KM)

AN = BM (gt)

Þ ∆AKN = ∆BKM (c.g.c).

c) Xét ∆AMQ và ∆BME có:

\(\widehat {AMQ} = \widehat {BME} = 90^\circ \)

\(\widehat {QAM} = \widehat {EBM}\) (Hai góc nội tiếp cùng chắn cung MP)

Þ ∆AMQ ᔕ ∆BME (g.g)

\( \Rightarrow \frac = \frac \Rightarrow AM.BE = BM.AQ\)

Mà AN = BM Þ AM.BE = AN.AQ

d) \(\widehat {ABM} = \widehat {RPM}\) (ABMP nội tiếp)

\(\widehat {RPM} = \widehat {QSR}\) (RPMS nội tiếp)

\( \Rightarrow \widehat {ABM} = \widehat {QSR}\) (Hai góc ở vị trí đồng vị)

Þ RS // AB

BP // KM Þ cung KP = cung MB

Þ

\( \Rightarrow \widehat {MOP} = \widehat {KOB} = 90^\circ \) (Hai góc ở tâm chắn hai cung bằng nhau)

Þ ∆OMP nội tiếp đường tròn đường kính PM

PQME nội tiếp đường tròn nên suy ra

Kẻ IC // AQ, ID // BQ \( \Rightarrow \widehat {CID} = \widehat {PQM} = 45^\circ \)

RS = OM = OA = OB = R (không đổi)

Þ C, D là trung điểm của OA, OB Þ C, D cố định

I luôn nhìn CD cố định dưới góc 45°

Þ I nằm trên cung chứa góc 45° vẽ trên đoạn CD cố định.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư