Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Ba điểm H, M, D thẳng hàng và AH = 2OM.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì BHCD là hình bình hành nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC nên M cũng là trung điểm của HD, do đó ba điểm H, M, D thẳng hàng.
Lại có AD là đường kính của đường tròn (O) nên O là trung điểm của AD.
Xét ∆AHD có O, M lần lượt là trung điểm của AB, HD nên OM là đường trung bình của tam giác,
Do đó hay AH = 2OM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |