Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bước 1: Gọi\[A = d \cap Oxy \Rightarrow \] Tìm tọa độ điểm AA.
Mặt phẳng Oxy có phương trình z=0.
Gọi \[A = d \cap Oxy \Rightarrow \] Tọa độ của A là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\\{z = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 0}\\{z = 0}\end{array}} \right. \Rightarrow A(2;0;0)\)
Bước 2: Lấy điểm B bất kì thuộc d. Gọi B′ là điểm đối xứng với B qua Oxy⇒ Tìm tọa độ điểm B′.
Lấy \[B\left( {0;0;1} \right) \in d\] Gọi B′ là điểm đối xứng với B qua \[Oxy \Rightarrow B'\left( {0;0; - 1} \right)\].
Bước 3: d′ là đường thẳng đối xứng với d qua mặt phẳng Oxy ⇒d′ đi qua A,B′. Viết phương trình đường thẳng d′.
d′ là đường thẳng đối xứng với d qua mặt phẳng Oxy ⇒d′ đi qua A,B′.
⇒d′ nhận\[\overrightarrow {AB'} = \left( { - 2;0; - 1} \right)//\left( {2;0;1} \right)\] là 1 VTCP ⇒\(d':\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = 0}\\{z = t}\end{array}} \right.\)
\( \Rightarrow a = 2,b = 2,c = 0\)
\( \Rightarrow a + b + c = 2 + 2 + 0 = 4\)Câu 28. Trong không gian Oxyz, gọi d′ là hình chiếu vuông góc của đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\) trên mặt phẳng (Oxy). Phương trình tham số của đường thẳng d′ là
A.\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = t}\\{z = t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{z = t}\end{array}} \right.\)
Bước 1:
Đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\) đi qua hai điểm O(0;0;0) và A(1;1;1).
Bước 2:
Hình chiếu của điểm O,A trên (Oxy) lần lượt là O(0;0;0) và A′(1;1;0).
Bước 3:
Khi đó hình chiếu của d là đường thẳng d′d′ đi qua O,A′, nhận \[\overrightarrow {OA'} = \left( {1;1;0} \right)\]là 1 VTCP nên có phương trình tham số là \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)
Đáp án cần chọn là: B
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |