Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{2} = \frac{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bước 1: Viết phương trình mặt phẳng (P) là mặt phẳng đi qua M và vuông góc với \[{\rm{\Delta }}\].
Ta có: \[{\rm{\Delta }}:\,\,\,\frac{x}{1} = \frac{2} = \frac{1}\] và M(2;0;1)
Gọi (P) là mặt phẳng đi qua M và vuông góc với\[{\rm{\Delta }} \Rightarrow \overrightarrow = \overrightarrow {{u_{\rm{\Delta }}}} = \left( {1;\,\,2;\,\,1} \right).\]
\[ \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0 \Leftrightarrow x + 2y + z - 3 = 0.\]
Bước 2: Tìm tọa độ điểm\[H = \left( P \right) \cap {\rm{\Delta }}\] khi đó H là trung điểm của MM′, từ đó tìm tọa độ điểm M′.
Gọi H là giao điểm của (P) và \[{\rm{\Delta }}\]
⇒ Toạ độ của H là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{x}{1} = \frac{2} = \frac{1}}\\{x + 2y + z - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{x + 2y + z - 3 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t - 4 + 4t + 1 + t - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 2 + 2t}\\{z = 1 + t}\\{t = 1}\end{array}} \right.\end{array}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 0}\\{z = 2}\end{array}} \right. \Rightarrow H(1;0;2)\)
Ta có: M′ là điểm đối xứng của M qua \[{\rm{\Delta }}\] ⇒H là trung điểm của MM′ ⇒M′(0;0;3)
Bước 3: Khoảng cách từ \[M\left( {{x_0};{y_0}} \right)\]đến mặt phẳng (P)
Ta có: (Oxy):z=0.
\[ \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \frac{{\left| 3 \right|}}{1} = 3.\]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |