Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \right)\). Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: 2
Phương pháp giải:
Giải phương trình \(f'\left( x \right) = 0\) xác định số điểm cực trị bằng số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).
Giải chi tiết:
TXĐ: \(D = \left( {0; + \infty } \right)\).
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\ln x + 1 = 0}\\{{e^x} - 2019 = 0}\\{x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\ln x = - 1}\\{{e^x} = 2019}\\{x = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{1}{e} \in \left( {0; + \infty } \right)}\\{x = \ln 2019 \in \left( {0; + \infty } \right)}\\{x = - 1 \notin \left( {0; + \infty } \right)}\end{array}} \right.\)
Vậy hàm số đã cho có 2 điểm cực trị.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |