Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?

Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?
1 Xem trả lời
Hỏi chi tiết
20
0
0
Nguyễn Thị Nhài
11/09/2024 13:08:22

Các cung chia đường tròn (O; R) thành 6 cung có số đo bằng nhau, suy ra số đo mỗi cung là 360° : 5 = 72°.

Ta có  là góc nội tiếp chắn cung MN suy ra

Xét ΔMON, có: OM = ON = R suy ra ΔMON cân tại O.

Suy ra (tính chất tam giác cân).

Do đó

Tương tự, ta có 

Suy ra

Xét ΔOMN và ΔONP có:

 OM = OP; ON chung.

Do đó ΔOMN = ΔONP (c.g.c).

Suy ra MN = NP (hai cạnh tương ứng).

Chứng minh tương tự, ta thu được ngũ giác MNPQR có các cạnh bằng nhau và các góc đều bằng nhau (đều bằng 108°).

Vậy MNPQR là một đa giác đều.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×