Tìm tất cả các giá trị thực của tham số m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx – 1 nằm bên phải trục tung?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
y = x3 + x2 + mx – 1
⇒ y' = 3x2 + 2x + m
Đồ thị hàm số có điểm cực tiểu khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt
∆' = 1 – 3m > 0 ⇔ m < \(\frac{1}{3}\)(1)
Khi đó, giả sử x1 và x2 là hai nghiệm của phương trình y' = 0
⇒ \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2}}{3}\\{x_1}{x_2} = \frac{m}{3}\end{array} \right.\]
Bảng biến thiên
Do x1 + x2 = \(\frac{{ - 2}}{3} < 0\) nên điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx – 1 nằm bên phải trục tung
⇔ x1x2 < 0 hay \(\frac{m}{3} < 0\) tức m < 0 (2)
Từ (1) và (2) suy ra: m < 0.Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |