Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC. b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D ∈ AB, E ∈ AC). Chứng minh BD.DA + CE.EA = AH2. c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh: \[\sin \widehat {AMB}\,\,.\,\sin \widehat {ACB} = \frac\].

Cho tam giác ABC vuông tại A, đường cao AH.

a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.

b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D ∈ AB, E ∈ AC). Chứng

minh BD.DA + CE.EA = AH2.

c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:

\[\sin \widehat {AMB}\,\,.\,\sin \widehat {ACB} = \frac\].

1 Xem trả lời
Hỏi chi tiết
72
0
0
Nguyễn Thanh Thảo
11/09/2024 13:08:15

Lời giải

a) Xét ∆ABC vuông tại A, ta có:

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{4^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\;(cm)\)

\[\sin \widehat {ACB} = \frac = \frac{4}{8} = \frac{1}{2} \Rightarrow \widehat {ACB} = 30^\circ \]

\( \Rightarrow \widehat {ABC} = 180^\circ - \widehat {BAC} - \widehat {ACB} = 180^\circ - 90^\circ - 30^\circ = 60^\circ \)

b) Tứ giác ADHE có \(\widehat A = \widehat D = \widehat E = 90^\circ \) nên ADHE là hình chữ nhật.

Suy ra DE = AH và \(\widehat {DHE} = 90^\circ \).

Do đó ∆DHE vuông tại H nên DH2 + EH2 = DE2.

Xét ∆ADH và ∆HDB có:

\[\widehat {ADH} = \widehat {HDB}\;\,\,\left( { = 90^\circ } \right)\]

\(\widehat {DAH} = \widehat {DHB}\) (cùng phụ \(\widehat {AHD}\))

Do đó ∆ADH ᔕ ∆HDB (g.g)

\( \Rightarrow \frac = \frac \Rightarrow EA.EC = E{H^2}\).

Þ BD.DA + CE.EA = DH2 + EH2 = DE2 = AH2.

c) Vì \(\widehat {AIB} = \widehat {AHB} = 90^\circ \) nên I, H thuộc đường tròn đường kính AB

Þ Tứ giác ABHI nội tiếp đường tròn đường kính AB

\( \Rightarrow \widehat {BAH} = \widehat {BIH}\) (Góc nội tiếp chắn cung BM)

Mà \(\widehat {BAH} = \widehat {BCM}\) (cùng phụ \(\widehat {CAM}\))

\( \Rightarrow \widehat {BIH} = \widehat {BCM}\)

Xét ∆BIH và ∆BCM có:

\(\widehat B\): góc chung

\(\widehat {BIH} = \widehat {BCM}\) (cmt)

Do đó ∆BIH ᔕ ∆BCM (g.g)

Suy ra \(\frac = \frac\) (các cạnh tương ứng tỉ lệ).

Xét ∆BAM và ∆BCA có:

\(\widehat B\): góc chung

\(\widehat {BMA} = \widehat {BAC}\;\left( { = {{90}^ \circ }} \right)\) (cmt)

Do đó ∆BAM ᔕ ∆BCA (g.g)

\( \Rightarrow \frac = \frac \Rightarrow BH = \frac{{A{B^2}}} \Rightarrow \frac{{A{B^2}}} = \frac\)

Khi đó \(\sin \widehat {AMB}.\sin \widehat {ACB} = \frac.\frac = \frac{{A{B^2}}} = \frac\).

Vậy \[\sin \widehat {AMB}\,\,.\,\sin \widehat {ACB} = \frac\] (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×