Một nhà máy cần sản xuất một bể nước không nắp bằng tôn có dạng hình hộp chữ nhật với đáy có chiều dài gấp hai lần chiều rộng và thể tích là Tính chiều rộng của đáy hình hộp chữ nhật đó sao cho số tôn cần sử dụng là nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi chiều rộng của đáy hình hộp chữ nhật đó là x (m) (x > 0).
Chiều dài của đáy hình hộp chữ nhật đó là 2x (m).
Chiều cao của hình hộp chữ nhật đó là: (m).
Diện tích đáy hình hộp chữ nhật đó là: x.2x = 2x2 (m2).
Diện tích xung quanh hình hộp chữ nhật đó là: (m2).
Diện tích tôn cần sử dụng là: (m2).
Xét hàm số
Ta có
f’(x) = 0 ⇔ 4x3 – 4 = 0 ⇔ x = 1.
Bảng biến thiên của hàm số:
x | 0 | 1 | +∞ | ||
f’(x) | – | 0 | + | ||
f(x) | +∞ | 6 | +∞ |
Căn cứ bảng biến thiên, ta có tại x = 1.
Vậy chiều rộng của đáy hình hộp chữ nhật là 1 mét để số tôn cần sử dụng là nhỏ nhất.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |