Cho hàm số y = (m – 1)x + m.
a) Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2.
b) Tìm tọa độ giao điểm của đường thẳng tìm được ở phần a và đường thẳng \(y = \frac{1}{2}x + \frac{3}{2}\) bằng tính toán.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Đồ thị hàm số cắt trục tung tại điểm của tung độ bằng 2 nên đồ thị của hàm số đi qua điểm A(0; 2) nên ta có:
2 = (m – 1). 0 + m ⇔ m = 2.
Vậy với m = 2 thì đồ thị của hàm số cắt trục tung tại điểm của tung độ bằng 2.
b) Với m = 2 ta có đồ thị hàm số y = x + 2.
Xét phương trình hoành độ giao điểm, ta có:
\(x + 2 = \frac{1}{2}x + \frac{3}{2}\)
\( \Leftrightarrow x - \frac{1}{2}x = \frac{3}{2} - 2\)
\( \Leftrightarrow \frac{1}{2}x = \frac{{ - 1}}{2}\)
⇔ x = −1
⇒ y = −1 + 2 = 1.
Vậy tọa độ giao điểm cần tìm A(−1; 1).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |