Một vật nặng có khối lượng m được kéo dọc theo mặt phẳng nằm ngang nhờ một sợi dây hợp với phương ngang một góc θ. Trong Vật lí, ta biết rằng lực kéo F cần thiết để di chuyển vật được cho bởi công thức
trong đó g là gia tốc trọng trường và c là hệ số ma sát của bề mặt (Theo Sullivan and Miranda, Calculus, W.H. Freeman and Company, 2014). Chứng tỏ rằng lực kéo F nhỏ nhất khi tanθ = c.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hàm số với θ ∈ [0°; 90°].
Đạo hàm của hàm F là:
Ta có
Giả sử θ0 thỏa mãn sao cho tanθ0 = c.
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
F(0°) = cmg; F(90°) = mg.
Dễ thấy rằng F(α) là giá trị nhỏ nhất trong các giá trị F(0°), F(α), F(90°).
Do đó F đạt giá trị nhỏ nhất tại θ0 thỏa mãn tanθ0 = c.
Vậy lực kéo F nhỏ nhất khi tanθ = c.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |