Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố:
A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”;
B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Chứng minh rằng A, B là hai biến cố độc lập.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Cách 1:
Theo bài ra ta có: n(Ω) = 7 ∙ 7 = 49; n(A) = 3 ∙ 7 = 21; n(B) = 7 ∙ 4 = 28.
Do đó, P(A) = ; P(B) = . Suy ra .
Ta có biến cố A ∩ B: “Quả bóng màu xanh được lấy ra ở lần thứ nhất và quả bóng màu đỏ được lấy ra ở lần thứ hai”. Suy ra P(A ∩ B) = .
Khi đó, P(A | B) = .
Ta có biến cố A ∩ : “Quả bóng màu xanh được lấy ra ở cả hai lần”.
Suy ra P(A ∩ ) = .
Khi đó, P(A | ) = .
Vậy ta có P(A) = P(A | B) = P(A | ) = . (1)
Tương tự, ta tính được:
P(B | A) = ; P(B | ) = .
Vậy ta có P(B) = P(B | A) = P(B | ) = . (2)
Từ (1) và (2) suy ra A, B là hai biến cố độc lập.
Cách 2:
Nếu A xảy ra, tức là quả bóng màu xanh được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Nếu A không xảy ra, tức là quả bóng màu đỏ được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp vẫn có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Như vậy, xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.
Vì lần thứ nhất lấy và lần thứ hai lấy sau lần thứ nhất nên P(A) = dù biến cố B có xảy ra hay không xảy ra.
Vậy A và B là hai biến cố độc lập.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |