Ta đã biết công thức tính thể tích của khối cầu bán kính R là V=4πR33. Làm thế nào để tìm ra công thức đó?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Sau khi học xong bài, ta giải quyết bài toán này như sau:
Khối cầu có bán kính R là khối tròn xoay nhận được khi quay nửa hình tròn giới hạn bởi đồ thị hàm số \(y = \sqrt {{R^2} - {x^2}} \left( { - R \le x \le R} \right)\) và trục Ox quanh trục Ox.
Từ đó thể tích khối cầu là:
\(V = \pi \int\limits_{ - R}^R {\left( {{R^2} - {x^2}} \right)dx} = \left. {\pi \left( {{R^2}x - \frac{{{x^3}}}{3}} \right)} \right|_{ - R}^R = \frac{{4\pi {R^3}}}{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |