Trong mặt phẳng tọa độ Oxy, cho hình thang OABC có A(0; 1), B(2; 2) và C(2; 0) (Hình 19). Tính thể tích khối tròn xoay tạo thành khi quay hình thang OABC quanh trục Ox.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có OABC là hình thang vuông, có đường cao OC nằm trên trục Ox.
Khi quay hình thang OABC quanh trục Ox ta được khối tròn xoay là khối nón cụt, có bán kính đáy bé r1 = OA = 1, bán kính đáy lớn r2 = BC = 2 và chiều cao h = OC = 2.
Thể tích cần tính là:
\(V = \frac{1}{3}\pi \left( {r_1^2 + {r_1}{r_2} + r_2^2} \right)h = \frac{1}{3}\pi \left( {{1^2} + 1.2 + {2^2}} \right).2 = \frac{{14\pi }}{3}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |