Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a2, chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì ABCD là hình vuông cạnh \(a\sqrt 2 \) và O là tâm của hình vuông nên ta có:
\(OA = OB = OC = OD = a\).
Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).
Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:
\(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z} = 1\) hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.
Ta có \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2a - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{3}\).
Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{4}{3}a\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |