Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có \(\overrightarrow {BC} = \left( { - 1;2; - 7} \right),\overrightarrow {BD} = \left( {0;4; - 6} \right)\), \(\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {16; - 6; - 4} \right)\)
Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận \(\overrightarrow n = \frac{1}{2}\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {8; - 3; - 2} \right)\) có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 Û 8x – 3y – 2z + 4 = 0.
Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:
8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.
Do đó A Ï (BCD). Suy ra ABCD là một tứ diện.
b) Ta có \(AH = d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {8.\left( { - 2} \right) - 3.6 - 2.3 + 4} \right|}}{{\sqrt {{8^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\sqrt {77} }}\).
c) Ta có \(\overrightarrow {AB} = \left( {3; - 6;3} \right)\) và \(\overrightarrow {CD} = \left( {1;2;1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 12;0;12} \right)\).
Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận \(\overrightarrow n = - \frac{1}\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {1;0; - 1} \right)\) có phương trình là (x + 2) – (z – 3) = 0 Û x – z + 5 = 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |