Nhóm bạn Đức dựng trên một khu đất bằng phẳng một chiếc lều từ một tấm bạt hình vuông có độ dài cạnh 4 m như Hình 9 với hai mép tấm bạt sát mặt đất. Tính khoảng cách AB để khoảng không gian trong lều là lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi độ dài đoạn AB là x (x > 0, đơn vị: mét).
Lều có dạng hình lăng trụ đứng tam giác với chiều cao h = 4 m và tam giác đáy có độ dài các cạnh là 2 m, 2m, x m, suy ra chiều cao tam giác đáy là (m).
Để không gian trong lều là lớn nhất tức là thể tích của nó lớn nhất.
V = S.h = .x..4 = 2x. = x. (0 < x < 4).
Ta có: x. ≤ = 18.
Dấu bằng xảy ra khi và chỉ khi x = ⇔ x = ∈ (0; 4).
Vậy Vmax = 18 m3 khi AB = m.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |