Tứ giác ABCD có hai góc đối diện B và D vuông, hai góc kia không vuông.
Chứng minh rằng có một đường tròn đi qua bốn điểm A, B, C và D. Ta gọi đó là đường tròn (?).Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆ABC vuông tại B nên đường tròn ngoại tiếp tam giác này có tâm là trung điểm của cạnh huyền AC. Do đó ba điểm A, B, C cùng nằm trên đường tròn đường kính AC.
Xét ∆ADC vuông tại D nên đường tròn ngoại tiếp tam giác này có tâm là trung điểm của cạnh huyền AC. Do đó ba điểm A, D, C cùng nằm trên đường tròn đường kính AC.
Vậy bốn điểm A, B, C và D cùng nằm trên đường tròn đường kính AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |