Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc OA, OB, OC hai đường trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 111). Chứng minh: a) ∆OMA = ∆OMB và tia Om là tia phân giác của góc NMP;

Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc OA, OB, OC hai đường trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 111). Chứng minh:

a) ∆OMA = ∆OMB và tia Om là tia phân giác của góc NMP;

1 Xem trả lời
Hỏi chi tiết
9
0
0
Phạm Văn Bắc
11/09 14:08:14

Xét hai tam giác vuông OMA và OMB, ta có:

OM là cạnh chung;

OA = OB (vì O là giao điểm ba đường trung trực của tam giác ABC).

Suy ra ∆OMA = ∆OMB (cạnh huyền – cạnh góc vuông).

Do đó OMA^  =  OMB^(hai góc tương ứng).

Vậy tia OM là tia phân giác của góc MNP.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×