Xét dấu mỗi tam thức bậc hai sau:
a) f(x) = 3x2 – 4x + 1;
b) f(x) = 9x2 + 6x + 1;
c) f(x) = 2x2 – 3x + 10;
d) f(x) = – 5x2 + 2x + 3;
e) f(x) = – 4x2 + 8x – 4;
g) f(x) = – 3x2 + 3x – 1.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tam thức bậc hai f(x) = 3x2 – 4x + 1 có ∆ = (– 4)2 – 4 . 3 . 1 = 4 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 13 và x2 = 1.
Lại có hệ số a = 3 > 0.
Vậy f(x) > 0 với mọi x thuộc các khoảng −∞;13 và (1; + ∞); f(x) < 0 với mọi x thuộc khoảng 13; 1.
b) Tam thức bậc hai f(x) = 9x2 + 6x + 1 có ∆ = 62 – 4 . 9 . 1 = 0.
Do đó tam thức f(x) có nghiệm kép là x0 = −13.
Lại có hệ số a = 9 > 0.
Vậy f(x) > 0 với mọi x∈ℝ\−13.
c) Tam thức bậc hai f(x) = 2x2 – 3x + 10 có ∆ = (– 3)2 – 4 . 2 . 10 = – 71 < 0 và hệ số a = 2 > 0 nên f(x) > 0 với mọi x∈ℝ.
d) Tam thức bậc hai f(x) = – 5x2 + 2x + 3 có ∆ = 22 – 4 . (– 5) . 3 = 64 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = −35 và x2 = 1.
Lại có hệ số a = – 5 < 0.
Vậy f(x) < 0 với mọi x thuộc các khoảng −∞;−35 và (1; + ∞); f(x) > 0 với mọi x thuộc khoảng −35; 1.
e) Tam thức bậc hai f(x) = – 4x2 + 8x – 4 có ∆ = 82 – 4 . (– 4) . (– 4) = 0.
Do đó tam thức f(x) có nghiệm kép x0 = 1.
Lại có hệ số a = – 4 < 0.
Vậy f(x) < 0 với mọi x∈ℝ\1.
g) Tam thức bậc hai f(x) = – 3x2 + 3x – 1 có ∆ = 32 – 4 . (– 3) . (– 1) = – 3 < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi x∈ℝ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |