Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và AB = 2DC. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SBC, H là giao điểm của DG và (SAC). Tính tỉ số \[\frac\].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi M là trung điểm của BC, I = AC ∩ DM .
Trong (SDM) gọi H = DG ∩ SI ta có:
• I ∈ AC ⇒ I ∈ (SAC) ⇒ SI ⊂ SAC
• H ∈ SI ⇒ H ∈ (SAC) ⇒ H = DG ∩ (SAC).
Gọi N là trung điểm của AD, E = AC ∩ MN
Nên MN là đường trung bình của hình thang ABCD
\[ \Rightarrow MN = \frac{2} = \frac{2} = \frac{2}\]
Áp dụng định lí Ta-lét, ta có:
• \[\frac = \frac = \frac{1}{2} \Rightarrow NE = \frac{1}{2}CD \Rightarrow ME = \frac{3}{2}CD - \frac{1}{2}CD = CD\]
• \[\frac = \frac = \frac = 1 \Rightarrow IM = ID\]
Kẻ GK // DM, áp dụng định lí Vi-ét ta có:
\[\frac = \frac = \frac = \frac = \frac = \frac{2}{3}\]
\[ \Rightarrow \frac = \frac{2} = \frac{2}{5} \Rightarrow \frac = \frac{2}{5}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |