Bài tập  /  Bài đang cần trả lời

Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].

Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].

1 Xem trả lời
Hỏi chi tiết
20
0
0
Phạm Văn Bắc
11/09/2024 14:23:49

Ta có: ∆ = (4m – 1)2 – 4.2.(2m – 1) = (4m – 3)2

2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0

⇔ \(\left[ {\begin{array}{*{20}{c}}{{x^2} + 2x = \frac{1}{2}\left( 1 \right)}\\{{x^2} + 2x = 2m - 1\left( 2 \right)}\end{array}} \right.\)

(1) ⇔ \({x^2} + 2x - \frac{1}{2} = 0\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 2 + \sqrt 6 }}{2} \notin \left[ { - 3;0} \right]}\\{x = \frac{{ - 2 - \sqrt 6 }}{2} \in \left[ { - 3;0} \right]}\end{array}} \right.\)

Do đó phương trình (1) chỉ có 1 nghiệm thuộc [−3; 0].

Để phương trình đã cho có 3 nghiệm thuộc đoạn [−3; 0] thì phương trình (2) phải có 2 nghiệm phân biệt thuộc đoạn [−3; 0] và hai nghiệm này phải khác \(\frac{{ - 2 - \sqrt 6 }}{2}.\)

(2) ⇔ (x + 1)2 = 2m.

Phương trình (2) có hai nghiệm phân biệt khác \(\frac{{ - 2 - \sqrt 6 }}{2}\) và thuộc đoạn [−3; 0]

⇔ \(\left\{ {\begin{array}{*{20}{c}}{2m > 0}\\{{{\left( {\frac{{ - 2 - \sqrt 6 }}{2} + 1} \right)}^2} \ne 2m}\\{ - 3 \le - 1 + \sqrt {2m} \le 0}\\{ - 3 \le - 1 - \sqrt {2m} \le 0}\end{array}} \right.\) ⇔ \(\left\{ {\begin{array}{*{20}{c}}{m > 0}\\{m \ne \frac{3}{4}}\\{m \le \frac{1}{2}}\\{m \le 2}\end{array}} \right.\)

Vậy không có giá trị nguyên nào của m thỏa mãn điều kiện của đề bài.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×