Cho hình chữ nhật ABCD, trên cạnh AB lấy các điểm M, N, P và trên cạnh DC lấy các điểm M’, N’, P’. Cho biết AM = MN = NP = PB và MM’, NN’, PP’ đều song song với BC (Hình 3). Tìm đường trung trực của mỗi đoạn thẳng AB, AN và NB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do ABCD là hình chữ nhật nên MM’ ^ AB, NN’ ^ AB, PP’ ^ AB.
Ta có AN = AM + MN; NB = NP + PB.
Do AM = MN = NP = PB nên AN = NB và N nằm giữa AB do đó N là trung điểm của AB.
Khi đó NN’ ^ AB và N là trung điểm của AB nên đường trung trực của đoạn AB là NN’.
Do AM = MN và M nằm giữa AN nên M là trung điểm của AN.
Do MM’ ^ AN và M là trung điểm của AN nên đường trung trực của đoạn AN là MM’.
Do NP = PB và P nằm giữa N và B nên P là trung điểm của NB.
Do PP’ ^ NB và P là trung điểm của NB nên đường trung trực của đoạn NB là PP’.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |