Phân tích tử và mẫu thành nhân tử rồi rút gọn phân thức:
a) \(\frac{{3{{\rm{x}}^2} - 12{\rm{x}} + 12}}{{{x^4} - 8{\rm{x}}}}\);
b) \(\frac{{7{{\rm{x}}^2} + 14{\rm{x}} + 7}}{{3{{\rm{x}}^2} + 3{\rm{x}}}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) \(\frac{{3{{\rm{x}}^2} - 12{\rm{x}} + 12}}{{{x^4} - 8{\rm{x}}}}\)
+ Phân tích tử số và mẫu số thành nhân tử:
3x2 – 12x + 12 = 3(x2 – 4x + 4)
= 3(x2 – 2 . x . 2 + 2) (Hằng đẳng thức (2))
= 3(x – 2)2
x4 – 8x = x(x3 – 8) = x(x3 – 23) (Hằng đẳng thức (7))
= x.(x – 2)(x2 + 2x + 22)
= x(x – 2)(x2 + 2x + 4)
+ Rút gọn phân thức:
\(\frac{{3{x^2} - 12x + 12}}{{{x^4} - 8x}}{\rm{ }} = \frac} = \frac{{x\left( {{x^2} + 2x + 4} \right)}}\)
b) \(\frac{{7{{\rm{x}}^2} + 14{\rm{x}} + 7}}{{3{{\rm{x}}^2} + 3{\rm{x}}}}\)
+ Phân tích tử và mẫu thành nhân tử:
7x2 + 14x + 7 = 7(x2 + 2x + 1) = 7(x + 1)2
3x2 + 3x = 3x(x + 1)
+ Rút gọn phân thức
\(\frac{{7{x^2} + 14x + 7}}{{3{x^2} + 3x}} = \frac} = \frac{{7(x + 1)}}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |