Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho
OA = OB, OM = ON, OA > OM. Chứng minh rằng:
a) ΔOAN=ΔOBM; b) ΔAMN=ΔBNM.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Xét hai tam giác OAN và OBM có:
OA = OB (theo giả thiết).
O^ chung.
ON = OM (theo giả thiết).
Vậy ΔOAN=ΔOBM (c – g – c).
b)
Do ΔOAN=ΔOBM nên AN = BM (2 cạnh tương ứng).
Có BN = OB – ON, AM = OA – OM.
Mà OB = OA, ON = OM nên BN = AM.
Xét hai tam giác AMN và BNM có:
AM = BN (chứng minh trên).
MN chung.
AN = BM (chứng minh trên).
Vậy ΔAMN=ΔBNM (c – c – c).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |