Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, \(\widehat {BAC} = 120^\circ ,\;\widehat {SBA} = \widehat {SCA} = 90^\circ \). Biết góc giữa SB và đáy bằng 60°. Tính thể tích V của khối chóp S.ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi M, N lần lượt là trung điểm của SA, BC.
Ta có: ∆SAB, ∆SAC lần lượt vuông tại B, C nên:
\(BM = CM = \frac{1}{2}SA = MS = MA\)
Suy ra hình chóp M.ABC có MA = MB = MC nên hình chiếu của M lên mặt phẳng (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC.
Dựng hình bình hành ABIC ta có: IB = AC = 2a, IC = AB = 2a
Tam giác ABC cân tại A nên AN ^ BC (trung tuyến đồng thời là đường cao) và \(\widehat {BAN} = 60^\circ \) (trung tuyến đồng thời là đường phân giác).
• Xét tam giác vuông ABC có AN = AB.cos 60° = a
Þ AI = 2AN = 2a
Do đó IA = IB = IC = 2a nên I là tâm đường tròn ngoại tiếp ∆ABC
Þ MI ^ (ABC)
Trong mặt phẳng (AMI) có SH // MI (H Î AI) và SH ^ (ABC)
Suy ra HB là hình chiếu của SB lên (ABC)
Do đó \(\left( {\widehat {SB;\;\left( {ABC} \right)}} \right) = \left( {\widehat {SB;\;HB}} \right) = \widehat {SBH} = 60^\circ \)
• Xét tam giác SAH có M là trung điểm của SA, SH // MI nên I là trung điểm của AH (Định lí đường trung bình)
Þ AH = 2AI = 4a
Áp dụng định lí Cosin trong tam giác ABH ta có:
BH2 = AB2 + AH2 − 2AB.AH.cos 60°
\( = {\left( {2a} \right)^2} + {\left( {4a} \right)^2} - 2\,.\,2a\,.\,4a\,.\,\frac{1}{2} = 12{a^2}\)
\( \Rightarrow BH = 2a\sqrt 3 \)
• Xét tam giác vuông SBH có: SH = BH.tan 60° = 6a
\({S_{\Delta ABC}} = \frac{1}{2}AB\,.\,AC\,.\,\sin \widehat {BAC} = \frac{1}{2}2a\,.\,2a\,.\,\sin 120^\circ = {a^2}\sqrt 3 \)
Vậy \({V_{S.ABC}} = \frac{1}{3}SH\,.\,{S_{\Delta ABC}} = \frac{1}{3}\,.\,6a\,.\,{a^2}\sqrt 3 = 2{a^3}\sqrt 3 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |