Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: y¢ = 3x2 − 6x + m
Để hàm số có hai điểm cực trị khi và chỉ khi phương trình y¢ = 0 có 2 nghiệm phân biệt
Û ∆¢ = 9 − 3m > 0 Û m < 3
Khi đó theo hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = \frac{m}{3}\end{array} \right.\)
Theo bài ra ta có: x12 + x22 = 3
Û (x1 + x2)2 − 2x1x2 = 3
\( \Leftrightarrow {2^2} - \frac{3} = 3\)
\( \Leftrightarrow m = \frac{3}{2}\) (thỏa mãn)
Vậy \(m = \frac{3}{2}\) là giá trị cần tìm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |