Có bao nhiêu giá trị nguyên của m để phương trình 22x + 1 − 2x + 3 − 2m = 0 có hai nghiệm phân biệt?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
22x + 1 − 2x + 3 − 2m = 0
Û 2.22x − 8.2x − 2m = 0
Û 22x − 4.2x − m = 0
Đặt t = 2x (t > 0), khi đó phương trình trở thành: t2 − 4t − m = 0 (*)
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm dương phân biệt nên ta có
\(\left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 + m > 0\\4 > 0\\ - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 4\\m < 0\end{array} \right. \Leftrightarrow - 4 < m < 0\).
Mà m Î ℤ nên suy ra m Î {−1; −2; −3}.
Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |