Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.
a) Chứng minh tứ giác ABHM nội tiếp.
b) Chứng minh OA.OB = OH.OM = R2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do ME, MF là tiếp tuyến với đường tròn suy ra ME = MF nên M thuộc đường trung trực của EF.
Ta có OE = OF nên O thuộc đường trung trực của EF.
Do đó OM là đường trung trực của EF.
⇒ EF ⊥ OM.
Tứ giác ABHM có \(\widehat {BAM} = \widehat {BHM} = 90^\circ \), mà hai góc này ở vị trí đối nhau nên tứ giác này nội tiếp đường tròn bán kính MB.
b) Xét ∆OHB và ∆OAM có:
\(\widehat {OHB} = \widehat {OAM} = 90^\circ \); \(\widehat {MOA}\) chung
(g.g)
\( \Rightarrow \frac = \frac\)
⇒ OA.OB = OH.OM (1)
Xét ∆OHE và ∆OEM có:
\(\widehat {OHE} = \widehat {OEM} = 90^\circ \); \(\widehat {MOE}\) chung
Do đó (g.g)
Suy ra \(\frac = \frac\)
Hay OH.OM = OE2 (2)
Từ (1) và (2) suy ra OA.OB = OH.OM = OE2 = R2.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |