Hình 7 mô tả công trình xây dựng cây cầu bắc qua một hồ nước với mặt hồ có dạng hình tròn tâm O bán kính 2 km. Cây cầu có hai đầu cầu là hai điểm A, B nằm trên đường tròn tâm O. Tính chiều dài của cây cầu để khoảng cách từ tâm O của hồ nước đến cây cầu là OH = 1 732 m (làm tròn kết quả đến hàng đơn vị của mét).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do hai điểm A, B nằm trên đường tròn tâm O bán kính 2 km nên ta có: OA = OB = 2 km = 2 000 m.
Xét ∆OAB có OA = OB (do A, B cùng nằm trên đường tròn tâm O) nên ∆OAB cân tại O. Do đó đường cao OH của ∆OAB đồng thời là đường trung tuyến nên H là trung điểm của AB, hay AH=BH=AB2.
Xét ∆OAH vuông tại H, theo định lí Pythagore, ta có: OA2 = OH2 + AH2
Suy ra AH2 = OA2 – OH2 = 2 0002 – 1 7322 = 1 000 176.
Do đó AH=1 000 176 m.
Vậy AB=2AH=21 000 176≈2 000 m.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |